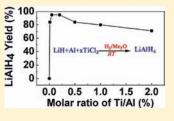


Ti-Doped LiAlH₄ for Hydrogen Storage: Synthesis, Catalyst Loading and Cycling Performance


Xiangfeng Liu,⁺ Henrietta W. Langmi,⁺ Shane D. Beattie,⁺ Felix F. Azenwi,⁺ G. Sean McGrady,^{*,+} and Craig M. Jensen⁺

⁺Department of Chemistry, University of New Brunswick, P.O. Box 4400, Fredericton, New Brunswick E3B 5A3, Canada

[‡]Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822-2275, United States

Supporting Information

ABSTRACT: The direct synthesis of LiAlH₄ from commercially available LiH and Al powders in the presence of TiCl₃ and Me₂O has been achieved for the first time. The effects of TiCl₃ loadings (Ti/Al = 0, 0.01, 0.05, 0.2, 0.5, 1.0 and 2.0%) and various other additives (TiCl₃/Al₂O₃, metallic Ti, Nb₂O₅, and NbCl₅) on the formation and stability of LiAlH₄ have been systematically investigated. The yield of LiAlH₄ initially increases, and then decreases, with increasing TiCl₃ loadings. LiH + Al \rightarrow LiAlH₄ yields above 95% were obtained when the molar ratios of Ti/Al were 0.05 and 0.2%. In the presence of a very tiny amount of TiCl₃ (Ti/Al = 0.01%), LiAlH₄ is still generated, but the yield is lower. In the complete absence of TiCl₃, LiAlH₄ does not form.

Addition of metallic Ti, Nb_2O_5 , and $NbCl_5$ to commercial LiH and Al does not result in the formation of LiAlH₄. Preliminary tests show that TiCl₃-doped LiAlH₄ can be cycled, making it a suitable candidate for hydrogen storage.

1. INTRODUCTION

Safe and efficient hydrogen storage technology is one of the key technical barriers to the widespread commercialization of hydrogen-fueled vehicles.^{1–3} Among the current hydrogen storage technologies, complex metal hydrides have received a lot of attention due to their high gravimetric H₂ capacity.^{4–6} LiAlH₄ has a theoretical hydrogen storage capacity of 7.9 wt % and starts to desorb hydrogen close to room temperature in the presence of suitable catalysts, making it a potential hydrogen storage medium for future hydrogen-fueled vehicles.^{7,8} However, the irreversibility of the dehydrogenation reactions of LiAlH₄ under practical conditions restricts its application as a suitable hydrogen storage medium. For example, rehydrogenation of LiH + Al to LiAlH₄ requires extremely high hydrogen pressures, in excess of 10 kbar.⁹

LiAlH₄ was first prepared through a reaction between LiH and AlCl₃ in ether solution (eq R1).¹⁰ Later, a metathesis reaction was also successfully applied to synthesize LiAlH₄ (eq R2).¹¹ If LiAlH₄ is to be used as a hydrogen storage medium, neither of these routes will be suitable for practical regeneration of the dehydrogenated material (i.e., LiH + Al).

$$4\text{LiH} + \text{AlCl}_3 \rightarrow \text{LiAlH}_4 + 3\text{LiCl} \tag{R1}$$

$$NaAlH_4 + LiCl \rightarrow LiAlH_4 + NaCl$$
(R2)

Direct synthesis of LiAlH₄ from its dehydrogenated products (LiH and Al) under moderate conditions is crucial if LiAlH₄ is to become a practical hydrogen storage material. In the 1960s, Ashby et al. reported the synthesis of LiAlH₄ from a mixture of LiH and activated Al in THF or diglyme solvent under 350 bar H₂ at 120 °C.¹² More recently, Wang et al. regenerated LiAlH₄

from a mixture of LiH and Al through high-pressure and highenergy ball-milling in the presence of THF and catalyst.^{13,14} In the latter study, the five-step physical and chemical pathway for rehydrogenation of LiAlH₄ required separation of catalyst in each cycle, and also the removal of THF by heating under vacuum over an extended period of time. In another study, Graetz et al. demonstrated a modified route to regenerate LiAlH₄ through an initial hydrogenation of Ti-catalyzed Al and LiH in THF to form the adduct LiAlH₄·4THF, and subsequent desolvation to recover LiAlH₄.¹⁵ In this method, ethereal AlH₃ was first prepared through a reaction between LiAlH₄ and AlCl₃ in Et₂O. With the addition of TiCl₃, the ethereal solution of AlH₃ was dried and decomposed to obtain Ti-catalyzed Al under vacuum. The methods employing THF as the reaction medium all require a separate step for removal of the THF. It usually takes 4-6 h to remove THF completely at 60 °C under reduced pressure. Besides the efficiency and cost of these methods, it is also not easy to avoid the decomposition of Ti-doped LiAlH₄ during THF removal. Our group has reported a much simpler and energy-efficient single-stage regeneration procedure for Ti-doped LiAlH₄.¹⁶ In this method, a mixture of LiH and Al from the decomposition of TiCl₃-catalyzed LiAlH₄ was rehydrogenated to form LiAlH₄ in the presence of volatile Me₂O at room temperature. Dry Tidoped LiAlH₄ powder was obtained directly after a cautious release of H₂ and excess Me₂O. The use of Me₂O not only delivers a high yield of LiAlH₄ but also avoids the time-consuming drying process.

In the work reported here, we have eliminated the initial dehydrogenation process of Ti-doped LiAlH₄ and directly synthesized the

Received:
 May 30, 2011

 Published:
 August 24, 2011

doped material directly from commercially available LiH and Al powders, in the presence of a TiCl₃-derived catalyst and Me₂O. The effects of TiCl₃ loadings (Ti/Al = 0, 0.01, 0.05, 0.2, 0.5, 1.0, and 2.0 mol %) and of other catalysts (TiCl₃/Al₂O₃, metallic Ti, Nb₂O₅, and NbCl₅) on the formation of LiAlH₄ have been systematically investigated. In addition, a preliminary study of the cycling performance of Ti-doped LiAlH₄ and of Ti/Al₂O₃-doped LiAlH₄ is presented.

2. EXPERIMENTAL METHODS

LiH (Aldrich, 95%), Al powder (Alfa Aesar, ~325 mesh, 99.97%), TiCl₃ (Aldrich, 99.999%), Ti (Aldrich, ~325 mesh, 99.98%), NbCl₅ (Aldrich, 99.9%), Nb₂O₅ (Aldrich, ~325 mesh, 99.9%), and Al₂O₃ (BDH, type 60/E) were used as received. All materials and samples were handled in a nitrogen-filled glovebox. LiH/Al/catalyst (catalyst = 0.2 mol % Ti, NbCl₅ or 0.1 mol % Nb₂O₅) and LiH/Al/TiCl₃ with various and 2.0%) were each mixed by ball-milling. In a typical experiment, a 5 g mixture of the powders was loaded in a 250 mL stainless steel milling vessel containing five stainless steel balls (about 162 g). The powder mixtures were mechanically milled at room temperature in a nitrogen atmosphere at a rotational speed of 300 rpm for 12 h using a Retsch PM 100 planetary ball-mill. After every 15 min of milling, there was a 30 s pause, and the rotation was automatically reversed. Ti/Al₂O₃ catalyst was prepared by milling TiCl₃ and Al₂O₃ in a 1:4 mol ratio. Activation of the catalyst was carried out under an initial hydrogen pressure of 100 bar. The supported catalyst was heated to 200 °C at a ramping rate of 2 °C min^{-1} , and held at that temperature for 12 h using a PCTPro-2000 Sieverts-type instrument manufactured by HyEnergy LLC. The LiH/ Al/TiCl₃/Al₂O₃ (0.05 mol % TiCl₃) mixture was recovered from the PCT vessel and ball-milled again.

Hydrogenation reactions in Me₂O (Air Liquide Canada Inc., chemically pure) were carried out in a 500 mL stainless steel stirred reactor (Parr Instruments). In a typical procedure, the reactor was loaded in a glovebox with 650 mg of the ball-milled LiH/Al/catalyst mixture. The reactor was sealed, removed from the glovebox, and connected to a Me₂O cylinder. Approximately 55 g of Me₂O was then transferred to the reactor. Next, H₂ gas (100 bar) was added to the reactor. After 24 h of stirring at ambient temperature the reaction was stopped, and H₂ and Me₂O were vented immediately.

Powder X-ray diffraction (XRD) was performed on a Rigaku MiniFlex II diffractometer with a Cu K α radiation source. Samples for XRD analysis were mounted on a PVC plastic disk and covered with parafilm to protect the material from contact with air or moisture during the experiments. The parafilm resulted in two diffraction peaks ($2\theta = 21.6$ and 24°). Thermogravimetric analysis was performed on a TGA Q50 series thermogravimetric analyzer. In a typical procedure, approximately 8 mg of sample was loaded in an Al crucible in a nitrogen-filled glovebox. The sample was heated to 300 °C at a ramping rate of 2 °C/min under a N2 flow rate of 120 mL/min. Decomposition kinetics plots were obtained using a commercial PCTPro-2000 Sieverts-type instrument produced by HyEnergy LLC. In a typical experiment, approximately 350 mg of sample was loaded into a sample holder in a nitrogen-filled glovebox. The sample holder was then attached to the PCT instrument without exposing the sample to air. The sample was heated at a ramping rate of 2 °C/min to 250 °C and then held at this temperature for 30 min.

In addition, the morphology and elemental analysis of the samples were studied by transmission electron microscopy (JEOL 2011 Scanning TEM).

3. RESULTS AND DISCUSSION

3.1. Effect of TiCl₃ Loadings on the Formation and Stability of LiAlH₄. Previously, we reported the regeneration of

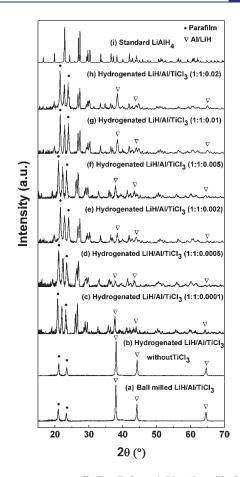
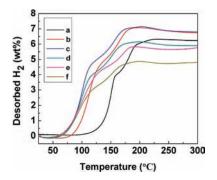
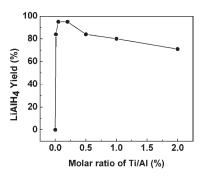


Figure 1. XRD patterns of ball-milled LiH/Al/TiCl₃ and hydrogenated samples with various TiCl₃ loadings: (a) ball-milled LiH/Al/TiCl₃ (1:1:0.002); (b) hydrogenated LiH/Al/TiCl₃ (1:1:0) without TiCl₃; (c) hydrogenated LiH/Al/TiCl₃ (1:1:0.0001); (d) hydrogenated LiH/Al/TiCl₃ (1:1:0.002); (f) hydrogenated LiH/Al/TiCl₃ (1:1:0.005); (e) hydrogenated LiH/Al/TiCl₃ (1:1:0.002); (f) hydrogenated LiH/Al/TiCl₃ (1:1:0.005); (g) hydrogenated LiH/Al/TiCl₃ (1:1:0.002); (i) standard LiAlH₄ from ICDD. LiAlH₄ formed after the hydrogenation of ball-milled LiH/Al/TiCl₃, but no LiAlH₄ formed without the addition of TiCl₃.

Ti-doped LiAlH₄ in Me₂O at room temperature.¹⁶ In this earlier study, LiAlH₄ was first doped with TiCl₃ and then decomposed to LiH and Al, followed by rehydrogenation in Me₂O. In the subsequent work reported here, we have avoided this rehydrogenation approach. Instead, commercially available LiH and Al (1:1) were directly doped using different amounts of TiCl₃ (molar ratio of Ti/Al = 0, 0.01, 0.05, 0.2, 0.5, 1.0, and 2.0%) by ball-milling and then hydrogenated at room temperature in Me₂O. It is notable that much lower amounts of TiCl₃ dopant are reported here. Figure 1 shows XRD patterns for ball-milled LiH/Al/TiCl₃ (1:1:0.002) and the hydrogenated samples with various TiCl₃ loadings. It is evident that these Ti-doped LiH/Al samples have been directly hydrogenated to LiAlH₄. The relative intensity of unreacted LiH/Al peaks decreases with decreasing amounts of $TiCl_3$ down to Ti/Al = 0.2%, indicating that lower TiCl₃ loading favors the formation of LiAlH₄ and increases its stability, in accordance with the catalyst activating both hydrogen uptake and release. However, when the TiCl₃ content was further lowered to 0.01% (Ti/Al), LiAlH₄ formed but the intensity of unreacted LiH/Al peaks increased slightly. The yield of LiAlH₄ as

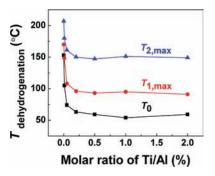

Figure 2. Temperature-programmed desorption (TPD) curves measured by TGA: (a) hydrogenated LiH/Al/TiCl₃ (1:1:0.0001); (b) hydrogenated LiH/Al/TiCl₃ (1:1:0.002); (c) hydrogenated LiH/Al/TiCl₃ (1:1:0.002); (d) hydrogenated LiH/Al/TiCl₃ (1:1:0.005); (e) hydrogenated LiH/Al/TiCl₃ (1:1:0.01); (f) hydrogenated LiH/Al/TiCl₃ (1:1:0.02).

Figure 3. Dependence of $LiAlH_4$ yield on the loading of $TiCl_3$ (molar ratio of Ti/Al).

a function of TiCl₃ loadings is discussed below. Undoped LiH/Al (Figure 1b) could not be hydrogenated to LiAlH₄, indicating that a very small but nonzero amount of TiCl₃ is necessary for the formation of LiAlH₄. It should be pointed out that the diffraction peaks of LiH are difficult to discern (Figure 1a) on account of the low atomic numbers of the elements, because LiH becomes amorphous after ball-milling, and/or because its peaks overlap with those of Al.^{13,14}

Figure 2 shows temperature-programmed desorption (TPD) curves of hydrogenated samples with various TiCl₃ loadings. The TPD curves were derived from TGA data. The maximum amounts of desorbed H₂ for LiH/Al/xTiCl₃ (x = 0.0001, 0.0005, 0.002,0.005, 0.01, and 0.02) were 6.3, 7.1, 7.1, 6.2, 5.8, and 4.9 wt %, respectively. Considering the purity of LiH (95%) and the maximum hydrogen content of $LiAlH_4$ (7.5 wt %, 95% purity), the yields of LiAlH₄ were calculated to be 84, 95, 95, 84, 80, and 71%, respectively. The dependence of the LiAlH₄ yield on the loading of TiCl₃ is presented in Figure 3. The yield of LiAlH₄ tends to increase with decreasing $TiCl_3$ loading down to x =0.002, and then decreases as x drops to 0.0001, in agreement with XRD analysis. The results also indicate that the TiCl₃-derived catalyst acts in both directions: it promotes the conversion of LiH/Al to LiAlH₄, and it activates the decomposition of LiAlH₄ to Li₃AlH₆ or LiH/Al. Under the current reaction conditions (room temperature and 100 bar H_2), a low Ti/Al proportion of 0.05-0.2% provides the optimum balance between conversion to LiAlH₄ and stability of LiAlH₄, resulting in a high yield. However, LiAlH4 did not form at all when LiH/Al was ball-milled

Figure 4. Dependence of dehydrogenation temperature on the loading of TiCl₃ (molar ratio of Ti/Al). T_{0} , $T_{1,\max}$, and $T_{2,\max}$ represent the onset dehydrogenation temperature, the dehydrogenation temperature at the maximum desorption rate during the first-stage dehydrogenation, and the dehydrogenation temperature at the maximum desorption rate during the second-stage dehydrogenation, respectively.

without TiCl₃, indicating the crucial role of tiny amounts of Ti in the formation of LiAlH₄. TiCl₃ shows a high catalytic efficiency in this system, and the loadings of TiCl₃ used in this study were much lower than those used in the previously reported THF-based synthesis of LiAlH₄,¹⁵ or of the widely studied NaAlH₄ system,¹⁷ where

2 mol % Ti is typically used. In this study, high TiCl₃ loadings (Ti/Al > 0.5%) result in a significant decrease in the yield, because LiAlH₄ is less thermodynamically stable than its Na congener, and higher TiCl₃ loadings promote decomposition of LiAlH₄. A two-stage decomposition of Ti-doped LiAlH₄ can be clearly observed in Figure 2, in agreement with previous studies.^{7,18}

Figure 4 shows the dependence of dehydrogenation temperature on the loading of TiCl₃ (molar ratio of Ti/Al). T_0 represents the onset dehydrogenation temperature, $T_{1, \text{ max}}$ represents the dehydrogenation temperature at the maximum desorption rate on the first stage of dehydrogenation, and $T_{2,\text{max}}$ represents the dehydrogenation temperature at the maximum desorption rate on the second stage of dehydrogenation. T_0 , $T_{1,\text{max}}$, and $T_{2,\text{max}}$ each show a significant decrease with increasing TiCl₃ loading (Ti/Al < 0.2%). When Ti/Al is above 0.2%, the dehydrogenation temperature changes slightly, indicating that a small amount of TiCl₃ greatly decreases the dehydrogenation temperature of LiAlH₄ and an excess of TiCl₃ might aggregate to form some "Ti-rich" areas (clusters) during the venting of H₂ and Me₂O. The activity of the Ti catalyst will be degraded by the formation of Ti clusters.

To investigate the formation of "Ti-rich" clusters, a TEM study was performed on a rehydrogenated LiH/Al/TiCl₃ (1:1:0.005) sample. Figure S1 shows an EDAX pattern measured for this sample, with the corresponding TEM image inset. This particle was chosen for its high Ti content. According to energy-dispersive X-ray (EDX) analysis, the composition of this particle is ~96% Ti and 4% Al, strongly suggesting that the Ti aggregates during cycling. This aggregation may explain the falloff in cycling performance. After each de-/rehydrogenation cycle, the Ti catalyst agglomerates into large particles with low surface area, that are not necessarily in contact with the majority of the LiAlH₄/LiH/Al sample.

3.2. Dehydrogenation Kinetics of Synthesized Ti-Doped LiAlH₄. The decomposition kinetics of Ti-doped LiAlH₄ was investigated by means of a Sieverts-type apparatus. As shown in Figure S2, as-received LiAlH₄ can release 7.5 wt % H. The

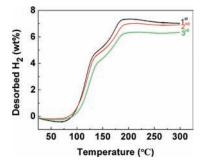


Figure 5. Cycling performance of $TiCl_3$ -catalyzed LiAlH₄ as measured by TGA. The amount of H₂ desorbed in the first, second, and third cycles is 7.3, 7.0, and 6.4 wt %, respectively.

desorbed hydrogen contents for the hydrogenated LiH/Al/xTiCl₃ (x = 0.0005 and 0.005) are 7.1 and 6.1 wt %, respectively, in excellent agreement with the TGA data reported in Figure 2. From the slope of the curves, the two-stage decomposition of asreceived and synthesized Ti-doped LiAlH₄ can be clearly observed. Compared to as-received LiAlH₄, the onset decomposition temperature for Ti-doped LiAlH₄ is significantly lowered, to around 80 °C. The onset temperature for hydrogenated LiH/Al/TiCl₃ (1:1:0.005) was lower than that for hydrogenated LiH/Al/TiCl₃ (1:1:0.005), demonstrating that the dehydrogenation temperature of TiCl₃-catalyzed LiAlH₄ decreases with increasing TiCl₃ concentration. However, it should be noted that the dehydrogenation temperature did not significantly change when a certain loading level of TiCl₃ (Ti/Al > 0.2%) was reached (as discussed above).

3.3. Hydrogenation-Dehydrogenation Cycling Performance of Ti-Doped LiAlH₄. About 1 g of Ti-doped LiAlH₄ that was prepared from the hydrogenation of LiH/Al/TiCl₃ (1:1:0.0005) was first dehydrogenated at 120 °C under a dynamic vacuum. Ball-milling was performed on the sample before each successive rehydrogenation in order to ensure proper dispersion of the catalyst, which may have agglomerated as a result of the dehydrogenation procedure (as discussed above). The dehydrogenated sample was rehydrogenated under the same conditions as the initial synthesis of LiAlH₄. The hydrogen capacity of the rehydrogenated sample was measured by TGA. The remaining sample was decomposed at 120 °C under dynamic vacuum for a second and third time and rehydrogenated under the same conditions. Figure 5 reports the amount of desorbed H_2 obtained from these three cycles: 7.3, 7.0, and 6.4 wt %, respectively, indicating the potential of TiCl₃-doped LiAlH₄ as a rechargeable hydrogen storage system. However, it was noted that the temperature for hydrogen release increased slightly with successive cycles; this may be attributed to gradual loss in catalytic activity or degradation of the active catalyst species, which is present only in very low amounts.

3.4. Effects of Al₂O₃-Supported Ti on the Hydrogen Storage Performance of LiAlH₄. In an attempt to investigate further the cycling performance of TiCl₃-doped LiAlH₄, TiCl₃ was deposited on an Al₂O₃ support. It was anticipated that this support may help to maintain a uniform distribution of the catalyst upon cycling, eliminating the need for ball-milling before successive rehydrogenation procedures, and improving the cyclic performance. The supported catalyst Ti/Al₂O₃ was prepared in a 1:4 mol ratio and activated with hydrogen at 200 °C. The reactant mixture (LiH and Al) was then doped with 0.05 mol % of this

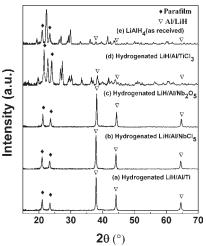


Figure 6. XRD patterns for hydrogenated samples with different additives (additive/Al = 0.2%): (a) hydrogenated LiH/Al/Ti; (b) hydrogenated LiH/Al/NbCl₅; (c) hydrogenated LiH/Al/Nb₂O₅; (d) hydrogenated LiH/Al/TiCl₃; (e) as-received LiAlH₄. No LiAlH₄ formed when metallic Ti, NbCl₅, or Nb₂O₅ was added in place of TiCl₃.

supported Ti and hydrogenated in Me₂O. This amount of catalyst was chosen because it gave the best performance in terms of yield and stability when neat TiCl₃ was used as a dopant (Section 3.1). A hydrogen desorption capacity of 5.9 wt % was obtained for the hydrogenated LiH/Al/TiCl₃/Al₂O₃ product (Figure S3). After dehydrogenation and subsequent rehydrogenation, the hydrogen capacity dropped to 4.0 wt % in the second cycle. The supported Ti/Al2O3 catalyst lowered the hydrogen desorption temperature, with release commencing at ca. 125 °C as opposed to 180 °C for the undoped material. Hydrogen desorption during the second cycle started at a higher temperature (140 °C) than for the first cycle (125 °C). It is possible that the Ti catalyst became detached from the support upon cycling and did not remain properly dispersed, thereby reducing its effectiveness. Hence, the cycling performance of the Ti/Al₂O₃-catalyzed material was found to be inferior to that of the straightforward Ti-doped LiAlH₄. Given the additional weight of the Al₂O₃ support, we conclude that there is no advantage to using a Ti catalyst in this form for the hydrogen cycling of LiAlH₄.

3.5. Effects of Metallic Ti, Nb₂O₅, and NbCl₅ Additives on the Formation of LiAlH₄. The effects of other additives (metallic Ti, Nb₂O₅, and NbCl₅) on the formation of LiAlH₄ from commercial LiH and Al were also investigated. However, under the experimental conditions described in Section 2, none of these resulted in the formation of LiAlH₄, as reported in Figure 6.

Extensive studies have been performed on the catalyzed NaAlH₄ system.^{18–23} However, the details of the role of titanium halide catalysts in the improved reversibility of NaAlH₄ are still unclear. An initial reduction reaction was suggested, and X-ray absorption spectroscopy confirmed that reduction of the original TiCl₃ in fact occurs, with Ti(III) being reduced to Ti(0) when NaAlH₄ was ball-milled with TiCl₃, and remaining in this oxidation state during subsequent desorption and absorption of hydrogen.²¹ The structure formed after ball-milling was close to that of metallic Ti but in a more distorted state. The formation of LiCl and the reduction of Ti(IV) were observed when LiAlH₄ was ball-milled with TiCl₄ in an early study.²⁴ As to the catalytic

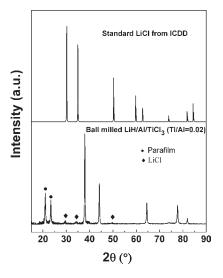


Figure 7. XRD patterns of standard LiCl from ICDD and ball-milled LiH/Al/TiCl₃ (1:1:0.02). LiCl was observed in the ball-milled mixture of LiH/Al/TiCl₃.

mechanism of our LiH/Al/TiCl₃ system, there might be some differences owing to the utilization of Me₂O. Interestingly, LiCl also formed after the mixture of LiH/Al/TiCl₃ was ball-milled (see Figure 7), and Ti(3+) might have a similar reduction in oxidation state during the ball-milling process. A detailed study of the catalytic mechanism of the conversion of LiH/Al to LiAlH₄ is still in progress.

4. CONCLUSIONS

In summary, we have succeeded in directly preparing Ti-doped LiAlH₄ from commercially available LiH and Al through the use of a TiCl₃ additive and Me₂O solvent. The yield of LiAlH₄ first increased and then decreased with increasing TiCl₃ content. A low percentage of $TiCl_3$ ($TiCl_3/Al = 0.05-0.2\%$) provides the optimum balance between the formation and stability of LiAlH₄, resulting in a high yield. However, LiAlH₄ did not form at all without the addition of TiCl₃. Furthermore, metallic Ti, Nb₂O₅, and NbCl₅ did not show any catalytic activity, and LiAlH₄ was not generated in the hydrogenation reactions. The hydrogenated TiCl₃-doped samples released more than 7 wt % hydrogen, with an onset dehydrogenation temperature of 80 °C. The dehydrogenated material could be cycled, with the material retaining about 6.4 wt % H capacity after three cycles. Al₂O₃-supported Ti showed some cycling ability but was deemed inferior to straightforward TiCl₃-doped LiAlH₄, which shows significant promise as a reversible, high-capacity hydrogen storage material.

ASSOCIATED CONTENT

Supporting Information. EDAX spectrum with TEM image inset, dehydrogenation kinetics curves measured by a Sieverts-type apparatus, and cycling performance of TiCl₃/Al₂O₃-catalyzed LiAlH₄. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author smcgrady@unb.ca

ACKNOWLEDGMENT

We are grateful to NSERC of Canada, the Canadian Foundation for Innovation, the U.S. Department of Energy, and HSM Systems Inc. for support of this work.

REFERENCES

(1) Schlapbach, L.; Züttel, A. Nature 2001, 414, 353.

(2) Ritter, J. A.; Ebner, A. D.; Wang, J.; Zidan, R. *Mater. Today* **2003**, *6*, 18.

(3) Mandal, T. K.; Gregory, D. H. Annu. Rep. Prog. Chem. Sect. A 2009, 105, 21.

(4) Graetz, J. Chem. Soc. Rev. 2009, 38, 73.

(5) Chen, P.; Zhu, M. Mater. Today 2008, 12, 36.

(6) Orimo, S.; Nakamori, Y.; Eliseo, J. R.; Züttel, A.; Jensen, C. M.

Chem. Rev. 2007, 107, 4111.

(7) Andreasen, A. J. Alloys Compd. 2006, 419, 40.

(8) Chen, J.; Kuriyama, N.; Xu, Q.; Takeshita, T.; Sakai, T. J. Phys. Chem. B 2001, 105, 11214.

(9) Varin, R. A.; Czujko, T.; Wronski, Z. S. Nanomaterials for Solid State Hydrogen Storage; Springer: Berlin, 2009.

(10) Finholt, A. E.; Bond, A. C.; Schlesinger, H. I. J. Am. Chem. Soc. 1947, 69, 1199.

(11) Bragdon, R. W.; Del Giudice, F. P. U.S. Patent 3,162,508, 1964.

(12) Ashby, E. C.; Brendel, G. J.; Redman, H. E. Inorg. Chem. 1963, 2, 499.

(13) Wang, J.; Ebner, A. D.; Ritter, J. A. J. Am. Chem. Soc. 2006, 128, 5949.

(14) Wang, J.; Ebner, A. D.; Ritter, J. A. J. Phys. Chem. C 2007, 111, 14917.

(15) Graetz, J.; Wegrzyn, J.; Reilly, J. J. J. Am. Chem. Soc. 2008, 130, 17790.

(16) Liu, X. F.; McGrady, G. S.; Langmi, H. W.; Jensen, C. M. J. Am. Chem. Soc. 2009, 131, 5032.

(17) Bogdanović, B.; Schwickardi, M. J. Alloys Compd. 1997, 253, 1.
(18) Langmi, H. W.; McGrady, G. S.; Liu, X.; Jensen, C. M. J. Phys.

Chem. C 2010, 114, 10666.

(19) Wang, P.; Jensen, C. M. J. Phys. Chem. B 2004, 108, 15827.

(20) Bogdanović, B.; Brand, R. A.; Marjanović, A.; Schwickardi, M; Tölle, J. J. Alloys Compd. 2000, 302, 36.

(21) Leon, A.; Kircher, O.; Rothe, J.; Fichtner, M. J. Phys. Chem. B 2004, 108, 16372.

(22) Brinks, H. W.; Jensen, C. M.; Srinivasan, S. S.; Hauback, B. C.; Blanchard, D.; Murphy, K. J. Alloys Compd. 2004, 376, 215.

(23) Kuba, M. T.; Eaton, S. S.; Morales, C.; Jensen, C. M. J. Mater. Res. 2005, 20, 3265.

(24) Balema, V. P.; Dennis, K. W.; Pecharsky, V. K. Chem. Commun. 2000, 17, 1665.